Beyond the Coasts: 5G or Wi-Fi? V2V Standardization in Action

A European Commission plan to implement the connected car-specific 802.11p “Wi-Fi” standard for vehicle-to-vehicle (V2V) communication was scrapped early July after a committee of the Council of the European Union (which formally represents individual member states’ during the legislative process) rejected it. The standard, also known as ITS-G5 in the EU, operates in the same frequency range as domestic Wi-Fi, now most often deployed under the 802.11n specification.

The reason for this rejection were made clear by the opponents of “Wi-Fi V2V”: telecommunication operators, and consortia of IT equipment and car manufacturers (such as BMW and Qualcomm) would never allow locking out 5G and its ultra-low latency, “vehicle-to-everything” (V2X) solutions. In turn, countries with substantial industrial interest in those sectors (Germany and Finland, to name only two,) opposed the Commission plan.

Yet it appears that Commissioner Bulc had convincing arguments in favor of 802.11p. In her letter to the European Parliament’s members, she stresses that the technology is available now, and can be successfully and quickly implemented, for immediate improvements in road safety. In her view, failure to standardize now means that widespread V2V communication will not happen until the “5G solutions” come around.

5G is a polarizing issue, and information about it is often tainted with various industries’ talking points. It first matters to differentiate 5G as the follow-up on 4G, and 5G as the whole-new-thing-everyone-keeps-talking-about. As the follow up on 4G, 5G is the technology that underpins data delivery to individual cellphones. It operates mostly in higher frequencies than current 4G, higher frequencies which have a lower range and thus require more antennas. That in turn explains why most current cellphone 5G deployments are concentrated in large cities.

The “other” 5G is based on a promise: the higher the frequency, the higher the bandwidth and the lower the latency. Going into the hundreds of GHz, 5G theoretically delivers large bandwidth (in the range of 10 Gbps) in less than 1ms, with the major downside of a proportionally reduced range and ability to penetrate dense materials.

The logical conclusions of these technical limitations is that the high-bandwidth, low-latency 5G, set to revolutionize the “smart”-everything and that managed to gather some excitement will become a reality the day our cities are literally covered with antennas at every street corner, on every lamppost and stop sign. Feasible over decades in cities (with whose money, though?), a V2X world based on a dense mesh of antennas looks wholly unrealistic in lower density areas.

Why does it make sense, then, to kick out a simple, cheap and patent-free solution to V2V communication in favor of a costly and hypothetical V2X?

Follow the money, one would have said: what is key in this debate is understanding the basic economics of 5G. As the deployment goes on, it is those who hold the “Standard Essential Patents” (SEPs) who stand to profit the most. As reported by Nikkei in May 2019, China leads the march with more than a third of SEPs, followed by South Korea, the US, Finland, Sweden and Japan.

If the seat of the V2V standard is already taken by Wi-Fi, that is one less market to recoup the costs of 5G development. It thus does not come as a surprise that Finland was one of the most vocal opponents to the adoption of 802.11p, despite having no car industry – its telecom and IT sector have invested heavily in 5G and are visibly poised to reap the rewards.

Reasonable engineers may disagree on the merits of 802.11p – as the United States’ own experience with DSRC, based on that same standard, shows. Yet, the V2X 5G solutions are nowhere to be seen now, and investing in such solutions was and remains to this day a risky enterprise. Investments required are huge, and one can predict there will be some public money involved at some point to deploy all that infrastructure.

“The automotive industry is now free to choose the best technology to protect road users and drivers” said Lise Fuhr, director general of the European Telecommunications Network Operators’ Association (ETNO) after their win at the EU Council. I would rather say: free to choose the technology that will preserve telcos’ and some automakers’ risky business model. In the meantime, European citizens and taxpayers subsidize that “freedom” with more car accidents and fatalities, not to speak of other monetary costs 5G brings about. The seat will have been kept warm until the day their 5G arrives – if it does – at some point between 2020 and 2025. In the meantime, users will have to satisfy ourselves of with collision radars, parking cameras, cruise control and our good ol’ human senses.

Leave a Reply

Your email address will not be published. Required fields are marked *