Search

  • AVs Must Not Perpetuate Infrastructure Racism

    In light of the 2021 Law and Mobility Conference’s focus on equity, the Journal of Law & Mobility Blog will publish a series of blog posts surveying the civil rights issues with connected and autonomous vehicle development in the U.S. This is the first part of the AV &…
  • Beyond the Coasts: 5G or Wi-Fi? V2V Standardization in Action

    A European Commission plan to implement the connected car-specific 802.11p “Wi-Fi” standard for vehicle-to-vehicle (V2V) communication was scrapped early July after a committee of the Council of the European Union (which formally represents individual member states’ during the legislative process) rejected it. The standard, also known as ITS-G5 in…
  • Cities, Streets, and COVID-19

    As the COVID-19 pandemic continues and our memories of the “before time” feel ever more distant, some have begun to wonder how this crisis and its aftermath could change how and where people live. Will people abandon expensive and dense major cities for smaller cities, suburbs or even small…
  • Connecticut Governor’s New Plan Shows the Many Roles States Play in Transportation

    Earlier this month, Connecticut’s Governor Ned Lamont announced and released the details of his plan to upgrade and “transform” the state’s transportation system. The plan, Connecticut 2030 (CT2030), allocates $21 billion primarily to improving Connecticut’s highways, airports, mass transit, and ports and is pitched as “what Connecticut…
  • Contracting Tools for Transportation Data

    Troves of transportation data can be, and are, produced by smart infrastructure. Municipalities collect various kinds of transportation data, including traffic information such as accidents, flows, and volumes; bicycle information such as bike counts; pedestrian information such as pedestrian counts; smart bus stop information; street mapping information; location information for traffic signals; mapping details such as the miles of city streets; and information on roadwork and infrastructure planning such as construction or road closures expected to affect traffic. Governments, educational institutions, non-profit enterprises, and businesses find transportation data useful for purposes such as improving infrastructure, reducing traffic congestion, improving vehicle and pedestrian safety, providing public security and emergency services, making transportation services more accessible, improving civic planning and design, research and development of new mobility products and services (including machine learning), and researching other potential uses for the data. Wider availability and sharing of transportation data would help to facilitate the development, testing, and adoption of smart infrastructure and connected and automated modes of transportation (collectively, “smart mobility products and services”). However, there are barriers to the accessibility of transportation data for these purposes. One is that there is a lack of standardization and clarity in the permissions granted when transportation data is made available, and another is that privacy and other concerns prevent much of the data that could be useful from being made available; an example of the latter is the discontinuation of a smart streetlights project in San Diego due to concerns about the potential use of transportation data for surveillance purposes. This paper explores license provisions and contracting tools that data providers can consider using when making transportation data publicly available. Part II describes the kinds of provisions that data providers typically include in the licenses or other terms and conditions that they apply to transportation data. Part III examines the agreements under which specific municipalities in four states (Michigan, California, Pennsylvania, and Arizona) make transportation data publicly available, including pursuant to template agreements. Part IV identifies additional template agreements that are available for use by data providers when making data publicly available. Finally, Part V sets out key considerations for data providers in choosing the terms under which they make their transportation data available.
  • How Much Electric Vehicle Charging Infrastructure Do We Need?

    Regardless of the mixed reactions to Tesla’s new Cybertruck, the electric vehicle revolution is here. Some analysts have predicted that within twenty years, half of new vehicles sold will be electric. For the future of the planet, we may need them to be. One core tenet of climate…
  • How Will CAVs Change the Shape of Our Cities?

    The rapidly approaching deployment of commercially available CAVs has led city planners to begin grappling with the ways in which this new technology is expected to shape our built environment.  A 2017 report from MIT’s Urban Economics Lab and Center for Real Estate, financed by Capital One, explores…
  • Mobility and Cybersecurity

    Over the last few years, emerging mobility technologies from CAVs to e-scooters have become the targets of malicious hackers. CAVs, for example, are complicated machines with many different components, which opens up many avenues for attack. Hackers can reprogram key fobs and keyless ignition systems. Fleet management software…
  • New Projects in Michigan and Elsewhere Show AV Testing and Development’s Bounce Back from COVID Lockdowns

    Like many industries, the automated vehicle industry faced setbacks due to this year’s many COVID-19 related local and regional lockdowns. In the spring, as the first wave of the virus spread, many companies had to stop testing to protect the human safety drivers and, in the case of Bay…
  • Problem Solving Class at Michigan Law Tackles Mixed Fleet Problems

    This fall, the University of Michigan Law School is offering its third Problem Solving Initiative (“PSI”) course concerning connected and automated vehicles. The first class, offered in the Winter 2017 semester, involved a team of fifteen graduate students from law, business, engineering, and public policy who accepted the challenge of…